From satellite remote sensing to closerange phenotyping: a revolution in traits accessible, data volume and interpretation methods

Fred BARET

INRAE-EMMAH-CAPTE, Avignon, France

Objects of interest, scales and dimensions

• Focus on objects with dimensions <10 m sensed in the reflective domain:

part of a field crop

or a microplot for phenotyping

Objects of interest, scales and dimensions

• Focus on objects with dimensions <10 m such as:

part of a field crop

or a microplot for phenotyping

The 6 dimensions used for object characterizing

Differences in the common temporal dimension

Phenotyping accesses to the diurnal cycle: IoT, UAVs: Example: leaf rolling

Leaf rolling : a process driven by the leaf water potential

Digital hemispherical photography (DHP) with high spatial resolution

Differences in the common spectral dimension

The spectral dimension is used for 3 types of traits:

1. Object identification

2. Abondance quantification

3. Biochemical composition

Differences in the common spectral dimension

The spectral dimension is used for 3 types of traits:

- 1. Object identification: example: green segmentation
 - Satellite: not possible within the object (limits of the spatial reslution)
 - Phenotyping: possible

2. Abondance quantification:

3. Biochemical composition:

High spatial resolution is mandatory for detailed identification of components

Differences in the common spectral dimension

The spectral dimension is used for 3 types of traits:

- 1. Object identification: example: green segmentation
 - Satellite: not possible within the object (limits of the spatial reslution)
 - Phenotyping: possible
- 2. Abondance quantification: generally based on unmixing
 - Satellite: strong assomptions on the mixture and stability of components
 - Phenotyping: classification of components in the scene

3. Biochemical composition:

Identification of classes of pixels from high resolution RGB imagery

0.8

NDVI

0.4

pixels within the crop fraction with SVM (color)

Differences in the common spectral dimension

The spectral dimension is used for 3 types of traits:

- 1. Object identification: example: green segmentation
 - Satellite: not possible within the object (limits of the spatial reslution)
 - Phenotyping: possible
- 2. Abondance quantification: generally based on unmixing:
 - Satellite: strong assomptions on the mixture and stability of components
 - Phenotyping: classification of components in the scene
- 3. Biochemical composition: example: chlorophyll content
 - Satellite: not easy because of the mixture of components with various orientation/contents
 - Phenotyping: allows selecting the targetted group of pixels

Leaf chlorophyll : focusing on the green pixels improves LCC (Leaf Chlorophyll Content) estimates

... Going to the pixel level LCC

... Going to the pixel level LCC ... just with RGB

Interest of the directionality (Ω) to derive GAI, AIA and FIPAR from the Green Fraction

Radiative transfer model simulations (turbid medium) to identify the best couple of directions to derive GAI (Green Area Index) and AIA (Average Inclination Angle) and the corresponding FIPAR (Fraction of Intercepted Radiation)

The combination [0°, 45°] appears optimal for FIPAR estimation

- Observations @ 0° is also convenient for deriving other traits
- Observations @ 45° better suits the geometry of the microplots (small width)

Validation from 3D model simulations

Very accurate estimates of FIPAR

Validation from actual experiments

Very good consistency with the theoretical results

A revolution in the interpretation methods

A revolution in the interpretation methods

Examples of GAI estimation from RTM inversion

Works reasonably well on vegetation not too far from the turbid medium assumption

A revolution in the interpretation methods

The empirical approach performs generally better than radiative transfer model inversion

A revolution in the interpretation methods

Canopy height measurements from 3D point clouds

Detailed canopy structure from LiDAR

Allows investigating plant competition

A revolution in the interpretation methods

Head identification and counting from RGB images using a deep learning model

Need a spatial resolution better than 0.5mm

Faster-RCNN Pretrained on the COCO dataset

	3										
400	Γ		'	'	'	'	'	-	'		7
380	ŀ										1
360										/	1
340	-								:	/	1
320	ŀ								1.	•	
300								·/:.			-
280	ŀ					•	/.	•	·		1
260					.)	1.	:	•			-
240	-		. '	· ·•,	/						
220	-		•.,	/÷	•••	•				RMSE = 17.49	1
200	-	/	/	•••	·					Bias = 6.11	1
180	ŀ.	/								R - 0.07	4

180 200 220 240 260 280 300 320 340 360 380 400

Ear density by Human labelisation

H² (%)	Date	ww	WS
Measurements	June 7 th	79.8	91.4
Estimates 1st date	June 2 nd	86.9	88.5
Estimates 2nd date	June 16 th	82.2	82.8

Very accurate and repeatable estimates of ear density

- Systematic coverage for satellites, reduced cost of acquisition ... but few traits!
- Phenotyping extends to many other traits than only GF, GAI, CCC, FIPAR... down to the plant/organ level
- Change in interpretation methods:

 \rightarrow from model driven to data driven approaches

- Contribution of the high spatial resolution data to calibrate models to be used for degraded spatial resolution
- Process models used for training Machine (Deep) Learning : data augmentation
 →a new challenge of realism!

 \rightarrow need methods to mimic actual images from the simulated ones

- A change in data volume!!! At least by several order of magnitudes: challenge of data management/storage /exchange
- Dynamics used to access functional traits

 →Empirically... but lack of physiological background
 →Based on crop growth models

Thanks for your attention