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Objects of interest, scales and dimensions
• Focus on objects with dimensions <10 m sensed in the reflective domain:

part of a field crop or a microplot for phenotyping
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Objects of interest, scales and dimensions
• Focus on objects with dimensions <10 m such as:

part of a field crop or a microplot for phenotyping
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Phenotyping

Satellite

• The 6 dimensions used for object characterizing
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Differences in the common temporal dimension
Phenotyping accesses to the diurnal cycle: IoT, UAVs: Example: leaf rolling

Leaf rolling : a process driven by the leaf
water potential
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Score

Digital hemispherical photography (DHP) with 
high spatial resolution

Time (UT) Time (UT)

No water stress Water stress
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Differences in the common spectral dimension
The spectral dimension is used for 3 types of traits:
1. Object identification

2. Abondance quantification

3. Biochemical composition
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Differences in the common spectral dimension
The spectral dimension is used for 3 types of traits:
1. Object identification: example: green segmentation

• Satellite: not possible within the object (limits of the spatial reslution)
• Phenotyping: possible

2. Abondance quantification:

3. Biochemical composition:
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High spatial resolution is mandatory for detailed identification of components

U-net

Excess Green

Random Forest
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Differences in the common spectral dimension
The spectral dimension is used for 3 types of traits:
1. Object identification: example: green segmentation

• Satellite: not possible within the object (limits of the spatial reslution)
• Phenotyping: possible

2. Abondance quantification: generally based on unmixing
• Satellite: strong assomptions on the mixture and stability of components
• Phenotyping: classification of components in the scene

3. Biochemical composition:
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Identification of classes of pixels from high 
resolution RGB imagery

NDVI Crop Fraction Yellow & senescent Fraction

NDVI is a good proxy of the 
Green Fraction… but …

Using color and features to 
identify crop pixels with
Deep Learning (U-net)

Classifying non-green 
pixels within the crop

fraction with SVM (color)
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Differences in the common spectral dimension
The spectral dimension is used for 3 types of traits:
1. Object identification: example: green segmentation

• Satellite: not possible within the object (limits of the spatial reslution)
• Phenotyping: possible

2. Abondance quantification: generally based on unmixing:
• Satellite: strong assomptions on the mixture and stability of components
• Phenotyping: classification of components in the scene

3. Biochemical composition: example: chlorophyll content
• Satellite: not easy because of the mixture of components with various

orientation/contents
• Phenotyping: allows selecting the targetted group of pixels
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Leaf chlorophyll : focusing on the green pixels 
improves LCC (Leaf Chlorophyll Content) estimates

Average of all pixels 50% Brightest green pixels
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Reasonable estimates, obviously
independant from the resolution

Good estimates of LCC when the 
resolution is small enough
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MULTISPECTRAL

… Going to the pixel level LCC
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… Going to the pixel level LCC … just with RGB
Multispectral RGB



Interest of the directionality () to derive
GAI, AIA and FIPAR from the Green Fraction

Radiative transfer model simulations (turbid medium) to identify the best couple of 
directions to derive GAI (Green Area Index) and AIA (Average Inclination Angle) and the 
corresponding FIPAR (Fraction of Intercepted Radiation)

The combination [0°, 45°] appears optimal for FIPAR estimation
• Observations @ 0° is also convenient for deriving other traits
• Observations @ 45° better suits the geometry of the microplots (small width) 
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Validation from 3D model simulations

ADEL-Wheat 4D architecture model
Coupled with Raytran for rendering

Very accurate estimates of FIPAR
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Validation from actual experiments

Very good consistency with the theoretical results
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A revolution in the interpretation methods
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A revolution in the interpretation methods

Canopy
Level

Kilometric Satellites
RTM inversion

GF, GAI, FIPAR
Canopy chlorophyll

Decametric Satellites
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Examples of GAI estimation from RTM inversion
Airplane (10 m²) Gantry (1 m²)UAV (1 m²)
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Satellite (1 km²)
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Works reasonably well on vegetation not too far from the turbid medium  assumption



A revolution in the interpretation methods

Canopy
Level

Kilometric Satellites
RTM inversion

GF, GAI, FIPAR
Canopy chlorophyll

Decametric Satellites

Phenotyping systems

Machine learning

Improved estimates
GF, GAI, FIPAR

Canopy chlorophyll
Leaf chlorophyll
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The empirical approach performs generally better 
than radiative transfer model inversion 

Radiative transfer model inversion Empirical transfer function
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A revolution in the interpretation methods

Canopy
Level

Kilometric Satellites
RTM inversion

GF, GAI, FIPAR
Canopy chlorophyll

Decametric Satellites

Phenotyping systems

Machine learning

Improved estimates
GF, GAI, FIPAR

Canopy chlorophyll
Leaf chlorophyll

Plant/Organ
Level

Geometric
approach

Plant height
3D structure
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Canopy height measurements from 3D point clouds

LiDAR/Phenomobile

3D point cloud
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RGB Camera/UAV and Structure from Motion

3D point cloud
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Detailed canopy structure from LiDAR

Allows investigating plant competition

Several sowing patterns experienced:
1 row, 2 rows, 3 rows, 4 rows, 7 rows

LiDAR measurements on wheat
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A revolution in the interpretation methods

Canopy
Level

Kilometric Satellites
RTM inversion

GF, GAI, FIPAR
Canopy chlorophyll

Decametric Satellites

Phenotyping systems

Machine learning

Improved estimates
GF, GAI, FIPAR

Canopy chlorophyll
Leaf chlorophyll

Plant/Organ
Level

Geometric
approach

Plant height
3D structure

Deep learning
Plant / organ
identification, 

characterization and 
counting

Disease symptoms
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Head identification and counting from RGB images using 
a deep learning model
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Conclusion
• Systematic coverage for satellites, reduced cost of acquisition … but few traits!
• Phenotyping extends to many other traits than only GF, GAI, CCC, FIPAR… down to the 

plant/organ level
• Change in interpretation methods: 
from model driven to data driven approaches

• Contribution of the high spatial resolution data to calibrate models to be used for 
degraded spatial resolution

• Process models used for training Machine (Deep) Learning : data augmentation
a new challenge of realism!
need methods to mimic actual images from the simulated ones

• A change in data volume!!! At least by several order of magnitudes: challenge of data 
management/storage /exchange

• Dynamics used to access functional traits
Empirically… but lack of physiological background
Based on crop growth models
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Thanks for your attention
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