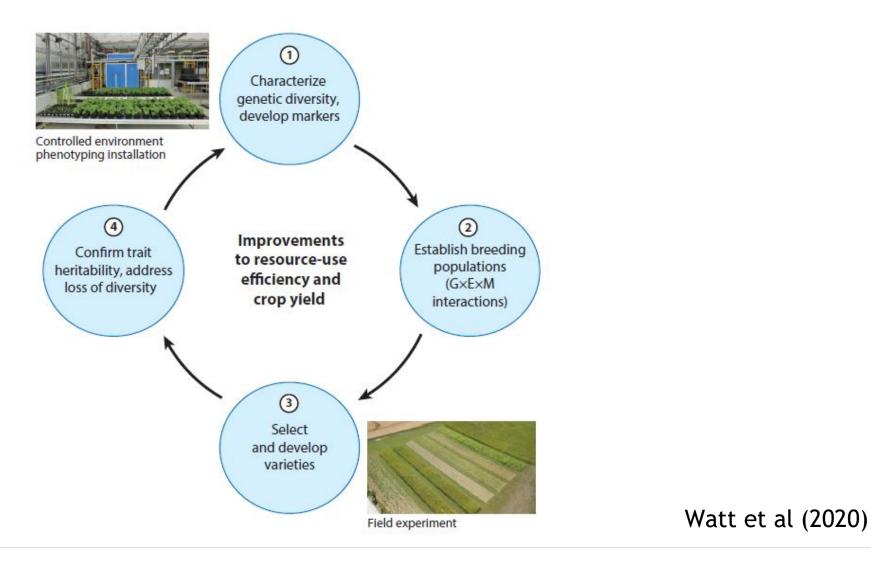


Phenotyping for crop improvement technologies - access - knowledge

Roland Pieruschka IBG-2: Plant Sciences Forschungszentrum Jülich

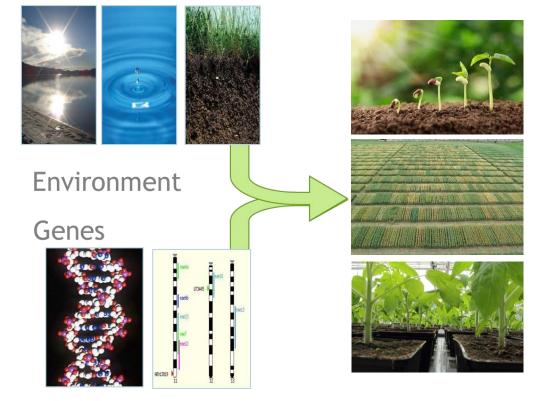
ESFRI

Plant Phenotyping: contribute to solving challenges



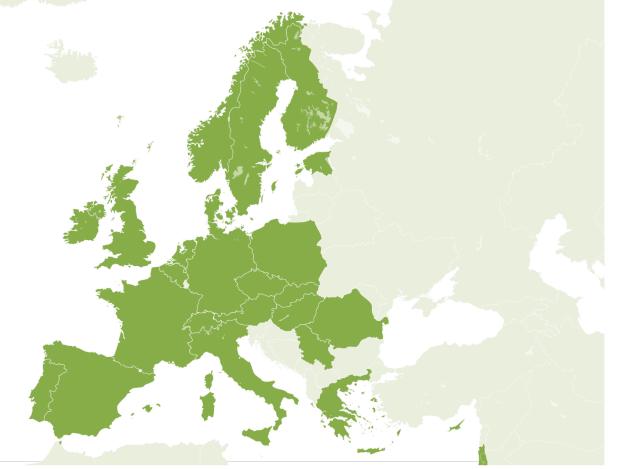
Phenotype: plant performance and plant production

- Higher quantity and quality of plant biomass production
- Novel characteristics and products
- Yielding in stressful environments
- Sustainable production / intensification


Plant phenotyping to improve crop varieties

Growing demand for plant phenotyping as a tool

Phenotype: need for quantitative assessment


- Addressing diverse crops and conditions
- Specialized infrastructure: plant characterization, environmental simulation
- Expertise is required, e.g. analysis pipelines, modelling, data re-usability
- Integrated (multi-disciplinary) approaches

EMPHASIS - European Infrastructure for Multi-Scale Plant ESFRI Phenotyping And Simulation for Food Security in a Chancing Climate

24 national communities associated with EMPHASIS

SYNERGY Investments Data Management Education/ Training From Academia to Industry ACCESS Development Use Translation/ Dissemination

Objectives

DEVELOPING INFRASTRUCTURE AND PROVIDING ACCESS

Develop an integrated pan-European infrastructure of instrumented facilities Link data acquisition to a European-level data information system and modelling Develop, evaluate and share knowledge and novel technologies

EMPHASIS: integrating plant

phenotyping in Europe

• 2016: EMPHASIS on the ESFRI Roadmap

> Preparatory Phase (2017-2020)

- Funded via a H2020
- Evaluate the phenotyping landscape in Europe
- Development of business plan with user strategy, governance, ...

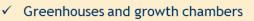
Implementation Phase (2019-2021)

- Implement to the long-term operations
- Engage countries (currently 11 ministries): decision making for future of operations / funding
- Set up of EMPHASIS pan-European Services

Operational Phase (2022/23 onwards)

- Long-term legal entity is in place
- Sustainable operation is ensured
- Access to facilities, resources and services is in place

Infrastructure in EMPHASIS


PLANT PHENOTYPING REQUIRES INTEGRATED CONCEPTS TO FULLY EXPLORE ITS POTENTIAL

Source: EMPHASIS homepage (<u>https://emphasis.plant-phenotyping.eu/emphasis_infrastructure_map</u>)

- LEAN FIELD

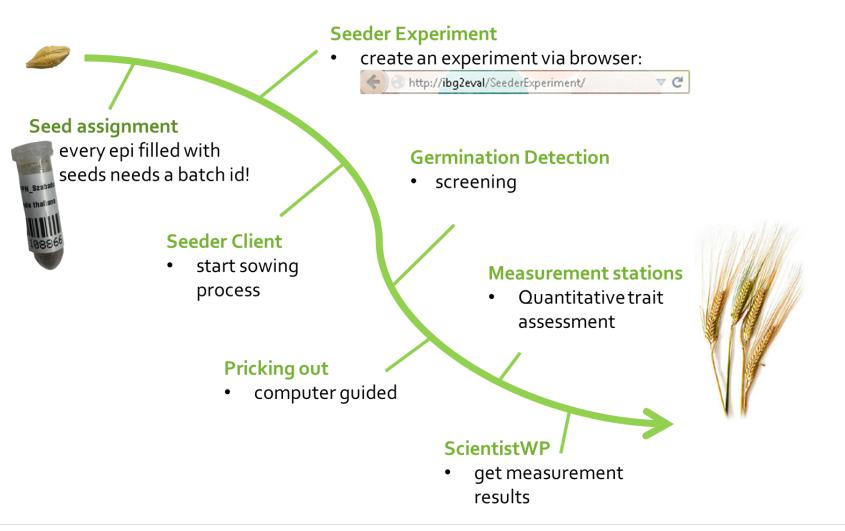
- ✓ Monitoring of environmental conditions
- ✓ Throughput typically between 100-1000s plants
- ✓ Field trials with environmental monitoring
- Phenotyping equipment for basic traits
- \checkmark ground based or airborne sensing systems

- ✓ Detailed environmental monitoring
- ✓ High quality phenotyping measurements
- ✓ Semi-controlled intensive field sites

- ✓ Virtual platforms
- ✓ Different types of models: Crop Models, FSPM
- ✓ integrated or interfacing with installations
- MODELLING

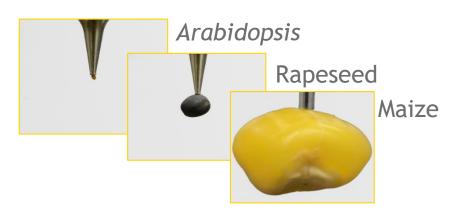
- \checkmark FAIR Information systems plant phenotyping data
- ✓ Access to data
- ✓ integrated information systems

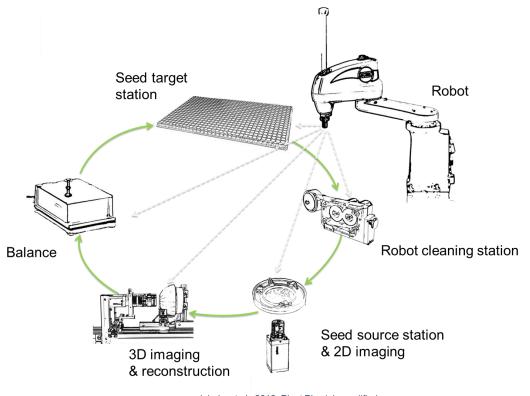
Example: shoot traits for improved plant productivity



CONTROLLED CONDITIONS

Phenotyping piplines

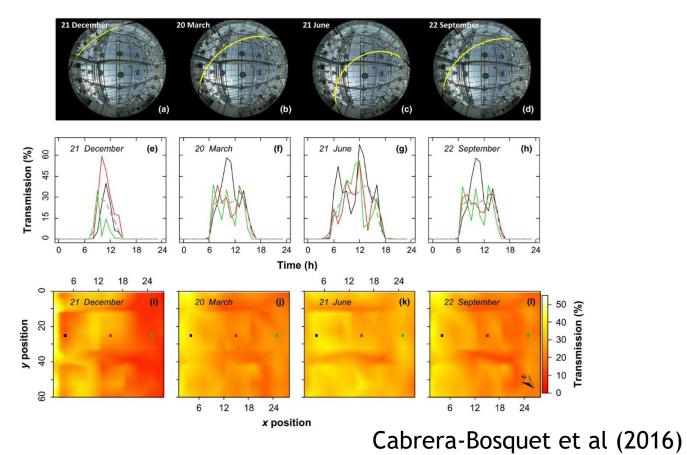



PhenoSeeder: Phenotyping of structure and function of seeds

A robot system for **phenotyping single seeds**

Jahnke et al (2016)

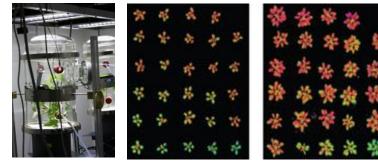
Jahnke et al., 2016, Plant Physiol., modified


Phenotyping of shoot structure and key functions

INTEGRATED CONCEPTS AND IMPLEMENTATIONS FOR HIGH THROUGHPUT

Growth Facilities plant to sensor / sensor to plant...

Environmental simulation and monitoring

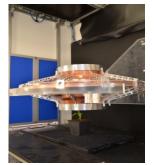


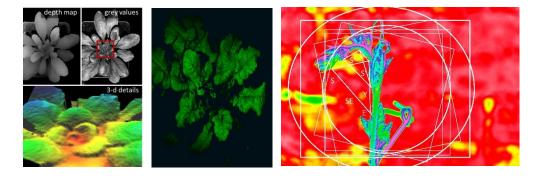
Phenotyping of shoot structure and key functions

Photosynthesis

(gas exchange, fluorescence methods)

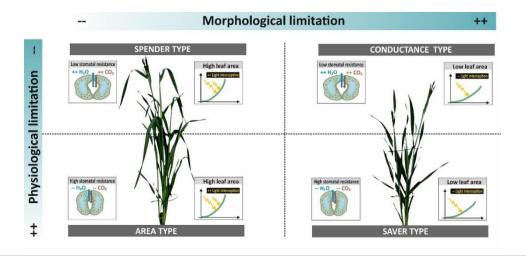
Biotic interactions

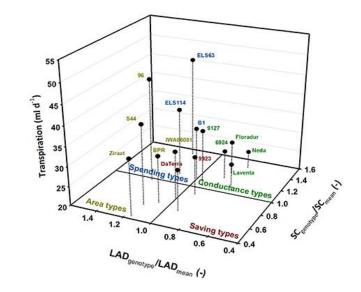

(hyperspectral imaging, 2D RGB imaging)


	Control									75 mM									150 mM								
2	to	105	16	•	10	et.	-	%		4	~		T	(*	.3	•	0		4	1	•		-				
H ₂ O	25	2	-	*	*	78	-3	8			4 F F	5 a a	2 & 8 B	2 4 4		* *	1				· · · · ·	e		· · · · ·	*)(*	
	15	56	20	20	20	-20	8	8%		**										-			(*)(*		(7)(#	3
	**	R	-	3		20	5										1			-					1	T	
	80	.fo	R	36	30	00	100	-		45				4	1	450			4	1			-	-	c	6	
	S.	-	4	15	20	55	*	15		C		1	420	P	-	*	Y				F		(*	-			
1 mM Putrescine	×	-50	20	-	*	ojo	050	210	HIMMIN		4.		-	34	*	-	45		0	•	í	(*)(69		•)(~	
	20	1050	-			50	to	ef.		16	3	*	*	-	-	-	+		F	\$.	6	-	-	an	+	f	
	et.	2	20	74	-	30	10	20		4	R	2	6	\$	fo	150	A		r	r)(*	E	in	8	e	
	.30	19	070	-	0%0	*	3	20		-15	*	4	45	4	-	8	8		C	3	6			-	-	r	
	8	3.	-?-	3	*	*f*	20	20			85	*	\$	1	120	15	2		ŧ	10	1	e	(4	?	r	F	
-	20		02	2	de	39	30	\$			-	a	5		*	8				-	~		1	6	*	1	

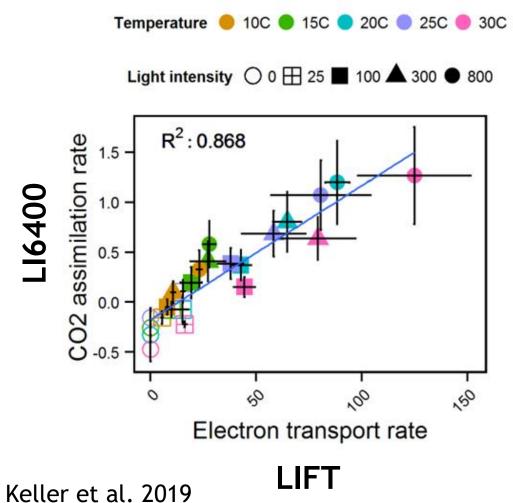
Water relations (gravimetric, microwaves)

Growth, biomass and shoot structure (2D / 3D RGB imaging)


Example: Contrasting genotypes for strategies for water acquisition



TNA scheme FP/ H2020 funded with >200 experiments


- Water use strategies for crop productivity in different drought environments
- Assess morphological and functional limitations

Example: Measurement of photosynthetic properties with the LIFT

EMPHASIS

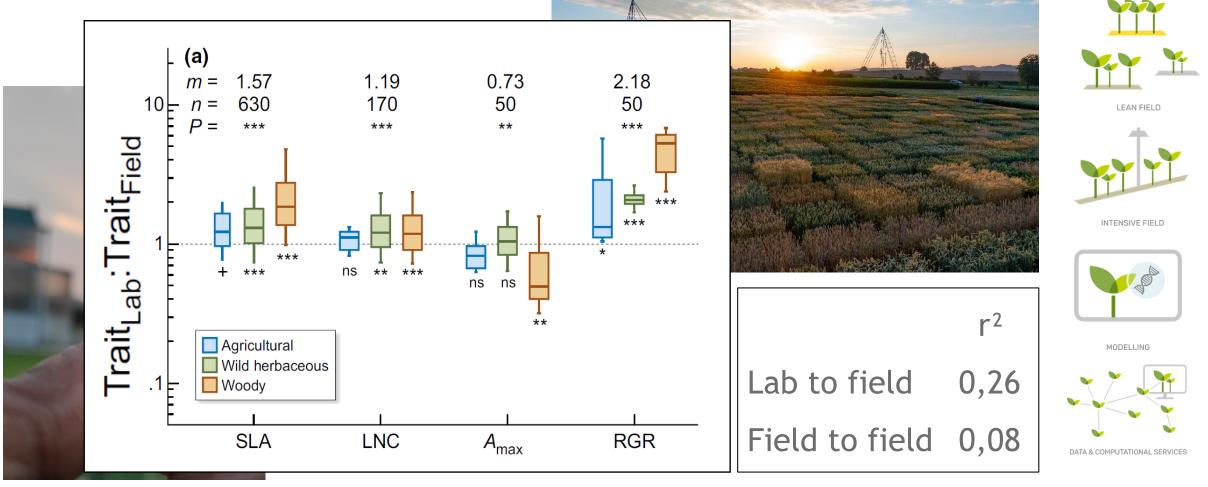
Phenotyping chains Practical experiments From single plant to field

CONTROLLED CONDITIONS

LEAN FIELD

INTENSIVE FIELD

MODELLING

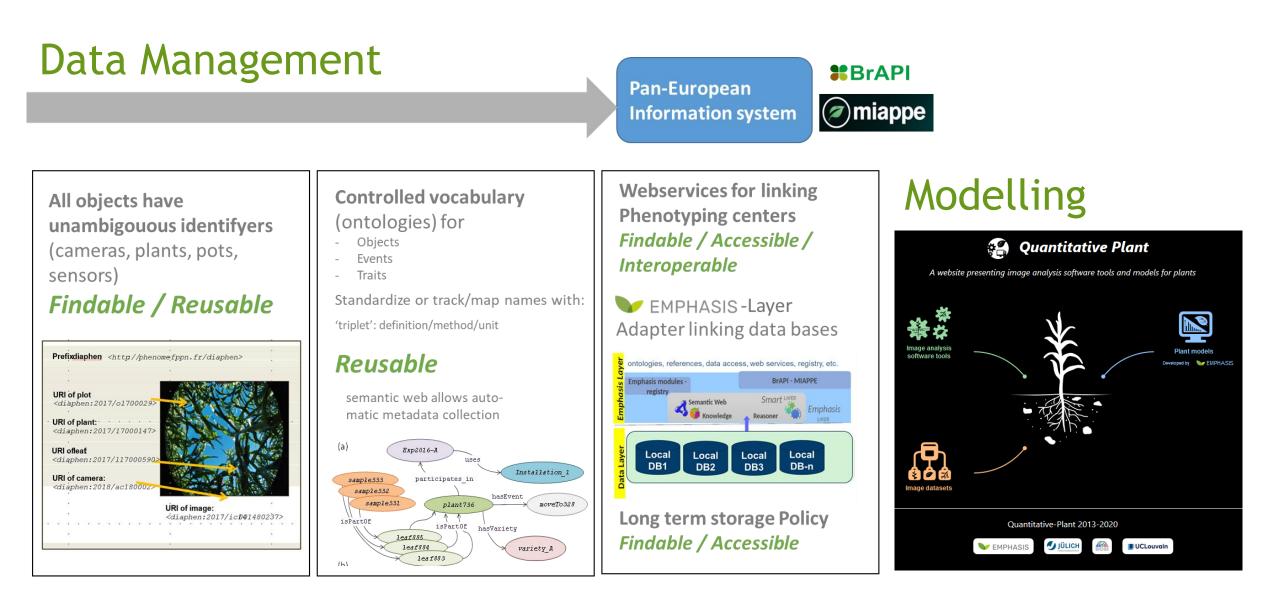

DATA & CONFORMIONAL SERVICE

EMPHASIS

EUROPEAN INFRASTRUCTURE FOR PLANT PHENOTYPING

(Poorter et al 2016)

Phenotyping chains Practical experiments From single plant to field



EMPHASIS

EUROPEAN INFRASTRUCTURE FOR PLANT PHENOTYPING

(Poorter et al 2016)

CONTROLLED CONDITIONS

https://www.quantitative-plant.org/model

Acknowledgement

EMPHASIS PREP

- Uli Schurr, FZJ
- Sven Fahrner, FZJ
- Lisa Vincenz-Donnelly, FZJ
- Asis Hallab, FZJ
- Constantin Eiteneuer, FZJ
- Dan Wang, FZJ
 Michela Janni, CNR
- Silvana Moscatelli, CNR
- Francesco Loreto CNR
- Malcolm Bennett, UNOT
- Darren Wells, UNOT
- Tony Pridmore, UNOT
- Francois Tardieu, INRAE
- Jean-Eudes Hollebecq, INRA
- Richard Traini, BBSRC
- Stijn Dhondt, VIB
- Merlijn Morisse, VIB
- Xavier Draye, UCL
- Clément Saint Cast UCL
- Rick van de Zedde, WUR

INTERNATIONAL PLANT PHENOTYPING

IPPN

NETWORK

- ☑ emphasis@fz-juelich.de
- emphasis.plant-phenotyping.eu
- **J** EMPHASIS_EU
- F EMPHASIS.EU
- in EMPHASIS on Plant Phenomics

EMPHASIS is an ESFRI-listed project.

EMPHASIS-PREP is funded by the European Union (Grant Agreement: 739514).