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Announcement Kick-off meeting WG3 SENSECO - Sensor synergies

Date: Tuesday February 05, 2019

Time: 09:00 -13:00

Location: Bro, Gzech Republic, hotel BWP Premier (hitps://www.hotelinternational.cz/en/)
Meeting description

Multi-sensor or synergistic sensor use will provide a deeper insight into the relations between spectral features and associated plant conditions. Working Group 3 aims to
help realize synergies between passive optical EO domains.

« Introducticn into the topic

« Overview on the expertise and sensors used from the WG3 participants

« On which concrete topics do we like to work on? Plant stresses with different sensors? Which kind of stresses?
« Will we use or even acquire (as part of a training for example) a common data set from different sensors?

« What will be the next event?

First aims and deliverables for WG3 are best practice protocols and guidelines for synergistic use of multi-sensor approaches.

From the SENSECO MC, a budget has been foreseen for 8 persons for which travelling can be reimbursed. The selection of these persons will be based on order of
registration by sending an email to miriam.machwitz@list.lu stating name and organization.

Minutes of the meeting can be downloaded here.
o
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SENSOR CALIBRATION AND
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https://www.researchgate.net/publication/309593558_Establishing_metrological_traceability_for_radiometric_calibration_of_earth_observation_sensor_in_Malaysia
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E R A L I B R AT I A D Optimized Spectrometers Characterization Procedure
for Near Ground Support of ESA FLEX Observations:

Part 1 Spectral Calibration and Characterisation

( I I A I a ( I I I z I 2 A I I O N Laura Mihai 1* ), Alasdair Mac Arthur 2, Andreas Hueni 3, Iain Robinson # and Dan Sporea B

Magurele 77125, Romania; dan.sporea@inflpr.ro
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4.1 Symbol This document also addresses the metadata related to calibration and validation. x;?' S
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PROTOCOLS FOR SIF MEASUREMENTS
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PROTOCOLS FOR SIF MEASUREMENTS

Aims to provide a better understanding on some possible mstrumental sources of error on the retrieval of
more specifically for the latest generation sensors available and on a single SIF retrieval method ada.
their features. :
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PROTOCOLS FOR SIF MEASUREMENTS
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PROTOCOLS FOR SIF MEASUREMENTS

Review the current approaches to measure F from leaf to canopy scale from ground based and
airborne platforms: instrumentation, measurement setups, protocols, quality checks and data
processing strategies.

ne proximal to the airborne scale
C enges of F estimations from proximal to airborne scale:
altitudes), data quadiz‘/ check (before analysis), m~£ J nz
€ /

elopment of computer models for
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Guideline on how to pre-evaluate possible SIF retrieval accuracies for FR (F emitted at the red région of

the spectrum) and FFR (F emitted at the far-red region of the spectrum ) considering the characteristics of
novel instrumentation (i.e. SR, spectral sampling interval (5S/), signal-to noise ratio (SNR)) in combination

with frequently applied retrieval schemes (i.e. sFLD, 3FLD, iFLD, and SFM).
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Data Preprocessing
- Radiometric calibration
- Atmospheric correction
- Geometric correction

- Coregistration and mosaicing
- Shadow minimization by

combining and aggregating
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Abstract: High-resolution airborne thermal infrared (TIR) together with sun-induced fluorescence
(SIF) and hyperspectral optical images (visible, near- and shortwave infrared; VNIR/SWIR) were
jointly acquired over an experimental site. The objective of this study was to evaluate the potential of
these state-of-the-art remote sensing techniques for detecting symptoms similar to those occurring
during water stress (hereinafter referred to as ‘water stress symptoms’) at airborne level. Flights with
two camera systems (Telops Hyper-Cam LW, Specim HyPlant) took place during 11th and 12th June

Supplementary Figure 14: Flowchart visualising the work-flow from remote sensing data to physiological (left) and
morphological (right) diversity measures. The functional traits are combined to a three-dimensional trait space
By iterating through the pixels using a moving window approach and changing the extent of the neighbourhood,
functional diversity measures can be calculated for many scales.



DATA FUSION PROTOCOLS
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DATA FUSION PROTOCOLS

Field Spectral Field

spectroradiometer curves campaign
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Metadata structure for field spectroscopy based on ISO 19156 (O&M), ISO

19115 (MD) and Sensor Model Language (SensorML).
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PROTOCOLS FOR EXPERIMENTS

Experimental Protocol for Field trials assessing drought stress ' P W L
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The experimental fields should be split into three plots. It has to be possible to give
different amounts of irrigation water to the three blocks. Water inflow from one block into

b
.

rotocols in ecological & environmental plant physiology

the other has to be avoided. MEND ‘
In each plot, the experimental clones are planted in blocks of 10 plants in a random » Home (2 Protocol
complete block design with 3 replicated blocks for each treatment. For trials that also sbout
serve to collect modeling parameters, 5 replicate blocks for control and terminal drought ¥ Sgssa”f (Cached)
have to be planted. 2 of the 5 blocks serve for sequential harvest, 3 for drought : Co,f)tact Us
susceptibility evaluation. Distance between rows should be 80 cm and between plants .y Cite This Page i H H 1
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Standardised methods for use in large agronomic, physiolegical and genetic field studies

Experimental Design to Determine Drought Stress Response and Early Leaf Senescence in Barley
(Hordeum vulgare L.)
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Multisensor distribution regression for crop yield estimation

Anna Mateo Sanchis, Jose Adsuara, Maria Piles, Adridn Perez-Suay, Jordi Mufnioz-Mari, and Gustau Camps-Valls

Universitat de Valéncia, Image Processing Laboratory, Image and signal processing, Spain (anna.n

Earth observation (EO) remote sensing data provide a unique source of informatio
temporally resolved and spatially explicit manner. This is of paramount relevance given |
of biofuels and food. Traditional remote sensing applications have exploited vegetation
crop phenology cycles, and have vastly relied on summarizing the time series in a set ¢
descriptors. It is customary to summarize EO time series with temporal metrics like tl
start/end of season, as well as to summarize all pixel-based observations within a region
We posit here that summarizing is not a good idea, and propose two nonlinear regressio
all time and space observations that allows blending multisensor (e.g. optical and microv
We illustrate the performance of the methods in two scenarios. First, we combine synergi
EVI) and microwave (SMAP-VOD) data using full time series stacked at county leve!
into a standard linear and nonlinear (kernel-based) machine learning regression to obtair
estimates over the U.S. corn belt. It is shown that the kernel regression outperforms the li
the use of full time series from multisensor data improves the results obtained with sta
sensors. The second experiment takes into account all goals simultaneously. In this case
regression strategy that does not need to summarize the behavior of a county in an averag
machine learning method exploits higher-order relations between all time series in a cou
the native spatial resolution of each sensor, improves accuracy and bias over previous 1
the validity of the multisensor fusion and the advantage of using distribution regressit
series for crop yield estimation.

Geophysical Research Abstracts
Vol. 21, EGU2019-12877, 2019
EGU General Assembly 2019

EGU

Geophysical Research Abstracts

Vol. 21, EGU2019-16696, 2019

EGU General Assembly 2019

© Author(s) 2019. CC Attribution 4.0 license.
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A multi-sensor approach for monitoring vegetation biophysical variables

Gerardo Lépez Saldafia (1), Jose Gomez-Dans (2), Feng Yin (2), Nicola Pounder (1), and Phillip Lewis (2)

(1) Assimila Ltd, Reading, United Kingdom (gerardo.lopezsaldana@assimila.eu), (2) University College London, Department
of Geography, United Kingdom

Monitoring vegetation biophysical parameters at global scale over a climate timescale (25+ years) is needed to
understand long-term land surface processes such as desertification and degradation. In order to create a time
series capable of capturing the variability of vegetation and ecosystem properties a multi-sensor approach is
needed to generate consistent climate data records.

Using observations from different sensors onboard of different platforms requires a consistent treatment in
order to combine data and keep track of the uncertainties along the whole processing chain, since not all sensor
will have the same characteristics and radiometric accuracy. This communications uses the MODIS (onboard
Terra and Aqua) and OLCI (onboard Sentinel-3) sensors to demonstrate the synergistic approach. The synergistic
approach uses the Sensor Independent Atmospheric Correction (SIAC) approach applied to MODIS and OLCI
data to derive surface reflectance on a set of common spectral bands. Then all the daily observations are used
within a optimal estimation framework to derived BRDF descriptors with associated uncertainties. The final step
comprises using Data Assimilation techniques to produced different vegetations parameters. The demonstrator
product uses one year of MODIS and OLCI data over different geographic areas with heterogeneous vegetation
coverage. The results show that using the two sensors the uncertainties in the vegetation parameters are reduced
and that the land surface characterisation is better than using a single sensor, nevertheless the synergistic approach
can be applied to different Earth Observation coarse resolution data products such as AVHRR, VIIRS and
PROBA-V.

© Author(s) 2019. CC Attribution 4.0 license.
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An optimized high spatial resolution fluorescence dataset to better
understand terrestrial ecosystem dynamics of productivity

Gregory Duveiller (1), Federico Filipponi (1), Sophia Walther (2), Christian Frankenberg (3.4), Philipp Kélher
(3), Luis Guanter (5), and Alessandro Cescatti (1)

(1) European Commission Joint Research Centre, Ispra, Italy (gregory duveiller@ec_europa.cu), (2) Max Planck Institute for
Biogeochemistry, Jena, Germany, (3) Division of Geological and Planetary Sciences, California Institute of Technology,
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Mapping and monitoring the spatial and temporal patterns of gross primary productivity (GPP) through the use of
satellite remote sensing is of paramount interest to enhance our understanding of terrestrial ecosystem dynamics.
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