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1. Introduction 
 

The general aim of working group 2 (WG2) of the Senseco initiative is to improve 

the time-series processing of satellite sensor data for modelling vegetation 

processes related to seasonal productivity. This includes phenology (timing of 

vegetation growth stages) as well as the production of green foliage biomass and 

relationships with the carbon cycle. This aim will be achieved by using a 

combination of satellite data from old and new sensors (e.g. Sentinel-2, Sentinel-

3), with temporal spectral observations from ground-based towers and 

instruments on low-flying aerial platforms (UAVs). By closing the temporal gap 

between day and season, a better understanding of the spatiotemporal changes 

of plant photosynthetic rate will be achieved linking the objectives of WG2 to 

those of WG1. 

 

To achieve an optimal and efficient use of satellite time-series, the generation of 

continuous fields in time and space starting from irregularly distributed data is 

of critical importance (Figure 1). In reality, several factors influence the 

acquisition process, resulting in incomplete datasets due to: (1) inadequate 

climatic conditions (clouds, snow, dust and aerosols), (2) instrumentation errors, 

(3) losses of image data during data transmission, or (4) low temporal resolution 

(i.e. long interval needed to revisit and acquire data for the exact same location), 

among others. 

 

 

Figure 1: Concept of spatiotemporal information from satellite time-series. The top figure 

illustrates different interesting components in a time-series of satellite data – trend, 

sudden events, and seasonal shape. The data are from a birch forest in N. Scandinavia, 

under attack by defoliating insects. The bottom figures illustrate how we go from a noisy 

time-series to seasonal parameters describing phenology and productivity of an area for 

Sentinel-2 data (source: Jönsson et al, 2018).  
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Over the past years several research teams have developed methods and 

procedures often implemented in toolboxes to reconstruct or improve incomplete 

satellite time-series datasets. During the first activities of WG2, an effort has 

been made to improve the understanding of biases in satellite data time-series 

caused by cloud and atmospheric influences, and decide how to address them in 

the subsequent processing. As a follow-up, robust methods/tools for gap-filling 

and modelling satellite observations in time, and methods for the quantification 

of temporal representation uncertainty have been identified, taking into 

consideration the biases observed in the data. 

 

During the first WG2 workshop in Wageningen in February 2019, the participants 

exchanged experiences with satellite time-series processing from different EO 

data sources and presented a broad range of applications for satellite time-

series. The DATimes toolbox was presented by the University of Valencia as an 

example how different processing methods could be adopted to handle biased 

observations, apply gap filling and derive phenological parameters from the time-

series data. In the second WG2 workshop in Toulouse in February 2020, the 

group of participants identified relevant biases and often found biases, relevant 

methods how to address these and finally different already available toolboxes 

for time-series analysis were presented and hands-on exercises with general 

available datasets or own datasets were executed. Based on this workshop, a 

selection of relevant robust methods/tools for gap-filling and modelling satellite 

observations in time, was identified. Also an overview of relevant time-series 

toolboxes was prepared as a starting point for further elaboration of a review 

paper describing the trends in remote sensing time-series analysis. 

 

This document summarizes the WG2 results related to the deliverable D2.1 which 

is aiming to deliver protocols for handling biased observations and gap filling in 

long-term satellite time-series.  

As part of the Senseco WG2 activities several papers have been prepared which 

cover this topic. This document is meant as overview and summary for these 

papers. The following papers have been prepared: 

 Belda, S., Pipia, L., Morcillo-Pallares, P., Pablo Rivera-Caicedo, J., Amin, E., De Grave, 

C., and Verrelst, J., 2020. DATimeS: A machine learning time series GUI toolbox for 

gap-filling and vegetation phenology trends detection. Environmental Modelling and 

Software 127 (2020) 104666 (https://doi.org/10.1016/j.envsoft.2020.104666).  

 León-Tavares, J., Roujean, J.L.,Smets, B., Wolters, E., Toté, C., and Swinnen., E., 

2020. Remote Sensing (submitted) 

 Pipia, L., Belda, S., Franch, B., and Verrelst, J., 2021. Trends in satellite sensors and 

image time series processing methods for crop phenology monitoring. In: Information 

and Communication Technologies for Agriculture—Theme I: Sensors, Springer. 

  

https://doi.org/10.1016/j.envsoft.2020.104666
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2. Overview of protocols for long-term satellite time-series 
 

2.1 Time series software packages 

 

In general, modelling the phenological evolution from long-term satellite time-

series represents a challenging task mainly because of time series gaps and 

noisy data (Belda et al., 2020), coming from different viewing and illumination 

geometries, cloud cover, seasonal snow and low temporal resolution (León-

Tavares et al., 2020).  

 

Several time series software packages have been developed over the last two 

decades, with capabilities of identifying phenology trends or disturbances, e.g. 

TIMESAT (Jönsson and Eklundh, 2004), BFAST (Verbesselt et al., 2010), 

TIMESTATS (Udelhoven, 2011), SPIRITS (Eerens et al., 2014), BeeBox (Arundel 

et al., 2016), phenor (Hufkens et al., 2018), pyPhenology (Taylor, 2018), 

CroPhenology (Araya et al., 2018), FORCE (Frantz, 2019), Earth Engine App (Li 

et al., 2019), EO Time Series Viewer (Jakimow et al., 2020) (Table 1). 

 

In most cases, these packages are freely available to process time series but 

they also face some limitation such as the need to use regular time series with 

more than one phenological cycle, the absence of graphical user interface (GUI) 

or being merely addressed to advanced users. Also, these packages provide 

limited tools for gap-filling and smoothing purpose (Belda et al., 2020).  

 

Table 1: Overview of time series processing toolboxes as identified during the Senseco 

WG2 workshop in Toulouse, February 2020. 

Toolbox Functionality Implementation Reference 

Timesat Gapfilling/indicators Stand alone (open source) Jönsson and 

Eklundh, 2004 

TimeStats Indicators/analysis IDL toolbox (IDL virtual 

machine) (open source) 

Udelhoven, 2011 

BFAST Indicators/analysis R library (open source) Verbesselt et al., 

2010 

DATimes Gapfilling/indicators/ 

analysis/visualization 

Stand alone (open source) Belda et al., 2020 

EOTSA Indicators/analysis/ 

visualization 

WPS + QGIS (open source) 

/ + R library (dev) 

Leopold et al., 

2020 
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2.2 Decomposition and Analysis of Time Series Software 

 

Recently and also as part of the Senseco initiative, the DATimes toolbox has 

been published and made available (Belda et al., 2020). The so-called 

Decomposition and Analysis of Time Series Software (DATimeS) is a stand-alone 

image processing GUI toolbox written in MATLAB. This toolbox can model and 

analyze regular and irregular time series data from complete images, specific 

region of interest or single pixels in multiple formats (e.g., geotiff, ENVI). It 

encompasses a suite of powerful mathematical fitting algorithms such as 

machine learning regression algorithms (MLRAs; e.g., decision trees, kernel-

based methods, neural networks) as well conventional fitting methods such as 

harmonic analyses (HA) (i.e. Fourier Transform (Roerink et al., 2000; Zhou et 

al., 2012, 2015)) and non-linear least squares regression, i.e. double logistic 

function (Richardson et al., 2009). With these smoothing and fitting algorithms, 

spatiotemporal gap-filling can be achieved. DATimeS enables to perform 

advanced time series tasks for: (1) the generation of spatially continuous maps 

from discontinuous data, i.e. gap-filling, and (2) detection of heterogeneous 

spatial patterns of phenological indicators (i.e., crop key growth stages) 

throughout multiple seasons (Figure 2). 

 

 

Figure 2: Available time-series analysis functionality within DATimes (source: Belda et 

al., 2020). 

 

The main functions for preparation of the time-series as described in DATimes 

are: 

1. Filtering options based on cloud thresholding and masking: the time series 

data can be inspected on missing values, typically due to cloud cover. The 

first step is to identify the cloudy pixels and to remove by setting their weight 

to zero. 

2. Interpolation is the main processing step of DATimeS: it allows to perform the 

time series gap-filling (Figure 3). About 30 interpolation algorithms have been 

brought together and categorized according to the following methods: (1) 

machine learning regression algorithms (MLRAs), (2) harmonic regression 
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methods, (3) conventional interpolation methods, and (4) others. Their 

complete list is reported in Belda et al. (2020). 

3. Finally, in the post-processing module, options are provided for spatial 

interpolation, and time series animation. 

 

 
Figure 3: Original and reconstructed time series of LAI using several gap-filling techniques. The 

example applies different time settings. Interpolated values of time series at a higher sampling 

frequency (every 20 days). The GPR uncertainties are shown in red shade areas (source: Belda et 

al. 2020). 

 

2.3 Correction of directional effects in satellite time series datasets 

 

Because of their very large imaging swath, the time series of spaceborne sensors 

like VEGETATION are not likely to observe the same target with an unique Sun-

target-sensor geometry configuration over time. The acquisition geometry for 

natural targets with such a wide swath can be significantly different even 

between satellite overpasses. This can seriously hamper the interpretation of 

observed temporal changes in surface reflectance and derived NDVI time series. 

The paper by León-Tavares et al. (2020) describes a methodology to perform a 

BRDF correction (removal of directional effects inferred by land surface 

anisotropy) to the NDVI time series derived from the three VEGETATION sensors. 

Applying the BRDF correction leads to reduce the noise observed in the NDVI 

time-series for the regions under study. The proposed methodology is 

computationally efficient to operate at global scale a BRDF-corrected NDVI 

product from VEGETATION sensor long-term series with a follow-on in the frame 

of the Copernicus Sentinel-3 satellite constellation. 
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3. Alternative remote sensing time-series datasets 
 

During the WG2 workshops in Wageningen and Toulouse, several participants 

also provided examples of alternative remote sensing time-series datasets not 

obtained through a satellite platform. The alternatives ranged from in-situ 

camera’s (e.g., phenocam; Figure 4) and sensors (e.g., The fluorescence box 

(FloX)) on the ground to the increased use of Unmanned Aerial Vehicle (UAV) 

platforms for monitoring of crop fields (Figure 5) and natural ecosystems with a 

range of camera types. These data sources are critical for cal/val studies in 

relation to satellite time-series or to validate the results of remote sensing based 

ecosystem and agronomical models. Also for these alternative time-series 

datasets, acquisition problems arise related to missing or disturbed data points. 

The question is to which extent the same approaches, procedures and toolboxes 

can be adopted as for satellite time-series data, or that alternative approaches 

and functions need to be prepared. This point will be further explored during the 

WG2 time-series data comparison exercise which is planned for the period 

January-May 2021. 

 

Figure 4: Comparison of ground NDVI from a 15-m mast, MODIS NDVI, and GPP 

estimated from flux tower measurements. Note discrepancy between satellite and tower 

measurements in spring (source: Eklundh et al., 2011) 
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Figure 5: Case study on the application of multi-spectral UAV time-series data to 

quantify end-of-season potato yield at the experimental plot level.  
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